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The U.S. Endangered Species Act (ESA) requires that critical habitar—areas
essential to the persistence or recovery of a species or population—be identi-
fied and protected (Goble and Freyfogle 2002). Despite apprehension that re-
quiring critical habitat designation at the time (or within a year) of listing un-
der the ESA would reduce the rate at which species were listed, this does not
appear to have happened (Greenwald et al., this volume; Suckling and Taylor
2006). In fact, critical habitat has been designated for only a fraction of listed
species (Scott et al. 2006). Reasons for the poor rate of designation include
concerns that it provides little additional protection to species (e.g., Hockstra
et al. 2002a, bur see Suckling and Taylor 2006) and that sufficient daca to de-
termine critical habitat are not available. One problem is lack of a systematic
framework for determining critical habitat using various types and amounts of
data.

There are two key steps to determining critical habitas. The first is to charac-
terize habitat requirements of a species based on its ecology and life history:
Ideally, this is achieved by identifying variables that contribute to presence,
density, and demography in different landscapes. The end product is a set of
quantitative, functional relationships that predict presence or abundance. When
sufficient data are lacking, descriptive habitat preferences based on known oc-
currences of the species are used to identify habitat requirements and elicit struc-
tured opinions from experts.

The second step is to evaluate how different amounts and configurations of
habitat affect survival or recovery of the species. In making this determination,
different scenarios for the amount and configuration of habitar under protec-
tion, and/or characteristics of the population inhabiting that area, are compared
to each other and to a criterion, a threshold, or a critical level that embodies an
acceptable risk of decline or loss. Again, when sufficient dara are lacking, expert
opinion can be used, cautiously, to evaluate risks of different scenarios for pro-
tecting critical habivat,
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The Endangered Species Act mandates designating critical habitat based on
the best available scientific data (Ruckelshaus and Darm, this volume). Data
availability differs by species, which in turn affects the approach used for deter-
mining suitable and critical habitats (Karl et al. 2002; Scott et al. 2002). Mod-
els are the primary means of assessing habitat relationships and predicting con-
sequences of habitat change (Wiens 2002). Ideally, sufficient data are needed to
effectively determine if the designated habitat would support a viable popula-
tion. However, often we cannot wait for these data to be collecred. As Ruck-
elshaus and Darm (this volume) point out, logistics of model selection and de-
velopment for determining critical habitat can be daunting,

In this chapter, we discuss a hierarchical approach to predicting species oc-
currence and designating critical habitat appropriate for the type and amount of
data available to managers.

A Multilevel Framework for Predicting Species Occurrence

Mapping species distributions involves estimation, since it is not feasible to ob-
serve presence ot abundance of a species across a wide area and because available
habitat expands and contracts over time in response to succession and distur-
bance, Furthermore, individuals might be absent from suitable habitat or oc-
cupy suboptimal habitat because of population size, social interactions, historic
events, ot current pressures. 1herefore, mapping species occurrence is an exer-
cise in prediction. Predictive models take many forms, bur in the context of
mapping species occurrence, three are fundamental: expert models, empirical
wmodels, and statistical models.

Expert models rely on knowledge, experiences, and judgment of biologists
with expertise in the distribution of a particular species. Although occurrence
data are often the basis for defining the predicted occurrence of a species,
expert-based maps can possess qualitative and arbitrary elements. They usually
define the extent of occurrence of a species or population and are often binary,
meaning they show where a species should or should not occur. Range maps
published in taxonomic field guides typify this approach.

Empirical models take a quantitative, geographic approach to defining suit-
able habitat for a species. They infer occurrence from empirical relations de-
scribing habitar suitability, usually through use of land cover and other bio-
physical geospatial data layers entered into a geographic information system
{GIS). Empirical models employ two broad approaches. The first, habitat suit-
ability indices (HSIs), describe the suitability of habicat variables, usually sub-
jectively, by experts. They require a priori weighting of individual empirical re-
lations between suitability and habirar characteristics for each GIS layer, such as
vegetation type and elevation. GIS Jayers are combined and analyzed spatially to
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define suitable and unsuitable habitar for the species. The second approach uses
presence-only information together with GIS layers to create geographic or cli-
matic “envelopes” that transcribe potential habitat {e.g., Elith 2000). In both
approaches, various grades of suitability (e.g,, high, medium, low) can be mod-
eled, meaning that occurrence becomes a probabilistic prediction, in contrast to
expert models. An example is occurrence models developed by the U.S. Gap
Analysis Program for a wide range of vertebrate species (Scott et al. 1993).

Statistical models are similar to empirical models in that they infer species
occurrence through its association with habitat variables. These models also re-
quire use of GIS and geospatial data. Statistical models of occurrence are distin-
guished from empirical models by the incorporation of numerical or statistical
analyses that associate probability of occurrence with habitat resources or other
features (e.g., mapped distributions of prey resources). Statistical models take
many forms and use differenc approaches, including multvariate distance and
factor analysis methods (Carpenter et al. 1999; Hirzel and Metral 2001), gen-
eral linear models, general additive models, resource selection functions (Boyce
et al. 2002; Manly et al. 2002), and machine learning methods (Elich 2000;
Elith and Burgman 2003).

Each modeling approach has advantages and disadvantages. Expert-based
models are attractive becausc they do not require extensive geographic data or a
GIS, nor do they require quantitative analysis of species occurrence data.
Hence, expert models can be thought of as “data informed” but not “dara re-
liant.” However, these models may be subject to biases of expert(s), and the
method may have low repeatability.

Empirical models are quantitative and repeatable and hence might be
viewed as more scientifically rigorous than expert-based models. However, habi-
tat suitability indices depend on expert judgment, and although more explicit
than expert models they still are susceptible to subjectivity and bias. They also
may be difficult to perform if expert group consensus is required. Envelopes
tend to be biased, overpredicting potential habitat (estimating more habitat
than is available) (Burgman and Fox 2003). Empirical and statistical approaches
require accessible GIS data relevant to the species, and models may be sensitive
to data quality (Edwards et al. 1996; Ferrier et al. 2002).

Statistical models are the least subjective and least biased, relying solely on
statistically derived relations between observations of presence/absence or abun-
dance and habitat variables to map a probability surface of occurrence. This
process is repeatable and scientifically defendable. These methods, however, can
require considerable expertise in statistical analysis. When presence/absence
data are lacking, psendoabsences may be generated using a range of algorithms
from a random selection of points to more complex methods of inference
(Zaniewski et al. 2002). Alternatively, a multivariate technique may be used
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that is designed to work specifically with presence-only data (Hirzel and Metral
2001).

A Proposed Multilevel Framework for Designating
Critical Habitat

The strengths and weaknesses of each model dictate the approach best suited to
a particular situation. For example, if species location and geospatial data are
not available, the expert model may be favored. Alternatively, if 2 higher level of
scientific rigor must be achieved, and data are available, empirical or statistical
methods may be favored. Generally, one can view the models as representing
positions along a continuum of increasing repeatability and rigor, from expert
to empirical to statistical, at the cost of increasing analytical complexity and re-
liance on data. Thus, the degree of scientific tigor is constrained by the burden
of data requirements and analytical capabilicy.

We advocate a multilevel framework for achieving the highest-possible levels
of scientific rigor (fig. 13.1). Our framewotk is based on the simple principle
that any predictive modeling exercise should begin at the lowest achievable [evel
{L.e., expert model) and build scientific rigor as the data and capabilities of or-
ganizations and their personnel allow.

. Expert-based approaches provide a foundation for building models of spe-
cees occurrence grounded in biological expertise and are therefore defendable in
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Figure 13.1. Potential framework for predicting species occurrence.
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their own right. Over time, experts can identify specific areas of uncertainty
where additional data are needed. Thus, the process of making expert maps
need not be a static, one-time exercise. Rather, modeling should proceed in an
iterative fashion, making use of new data to allow for continual revision, refine-
ment, and independent validation. As with any model, expert models are most
accepted when confronted and validated with independent data.

Validating expert models with independently collected data also allows the
establishment of databases that accommodate empirically based occurrence
models. Like expert models, empirical models can be made transparent and de-
fendable if uncertainties are represented explicitly in functions and on maps
(Burgman et al. 2001). Validation data can be used to develop empirical rela-
tions between occurrence and habitat suitability. Empirical modeling, like
expert modeling, should be an ongoing process; independent dara collection
and validation are necessary for determining map accuracy and subsequent
revistons.

The process of validating empirical models provides additional biological
data to construct statistically based models and to represent model uncertainties
mathematically and visually (Elith et al. 2002). Observations of species pres-
ence/absence used in validation also can be used to build statistical models. Fur-
ther, the process of creating empirical models facilitates the statistical approach
because empirical models provide a guide to which variables are likely to deter-
mine the distribution and abundance of the species and the forms of statistical
relations they must likely accommodate. For example, the relationship berween
a habitat variable (e.g., elevation) and a species’ occurrence may be quadratic,
rather -than linear, with a peak in suitability at intermediate values {e.g., a
species occupying habitats only at intermediate elevatjons). Knowiedge of the
functional relation between a species” habitat and its occurrence is necessary for
constructing appropriate models, and, fortunately, this informartion is often
provided from empirical models of species occurrence, such as habitat suitabil-
ity models.

Statistical models also require validation with independent data before their
accuracy can be judged, although this practice seems to be accepted as necessary
when using statistical approaches for modeling species occurrence (Boyce e al.
2002). Addisional data can be incorporated easily into subsequent runs of the
statistical model. As the extent and sample size of data grow, so does model
completeness and accuracy (tables 13.1 and 13.2).

Identifying Suitable Habitat Using Logistic Regression

It is common for researchers and resource managers to have location infor-
mation for a target species, such as those found in breeding bird atlases
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TasLE 13.1 Making predictions with available data

Data type

Uses for data

Expert information, collateral dara,
allomerric relationships, qualitative
trends

Information from cell above, plus single
count (census in one time step)

Information from two cells above, plus
counts over time {census in maltiple
time steps)

Information from all cells above, plus
life history information (censuses
include dara on stage, age, sex)

Any of the above with spatial data

Guess N (current or target population
size), develop conceptual modei

Estimate V

Scalar model {estimate &V, trend)

Structured model {estimate survival,
reproduction, 1V, trends)

Same models with spatial structure

(e.g., habitat-based population
viability analysis}

Note: Data are provided in sequence from least to most required.

‘TaBLE 13.2 Deriving statistical models from available data

Data type

Derived babitar models

Map(s) and experts

Habitat suitability index

Minimum convex polygons, alpha hulls,
Locations only kernels
Locations and maps of variables  + climate envelopes, multivariate distance
methods, canonical cotrelation analysis

Locations and random f{avail-
able) locations and maps

Presence/absence (used and
unused locations)

Abundance/absence and maps

Resource selection function

General linear model (logistic regression), gen-
eral additive model
General linear model {Poisson regression),

general additive model

Habitat dynamics
All data types

Landscape models (new in recovery context)
Decision trees, neural networks, genetic

algorithms

Note: Dara gypes ate presented in increasing order of data need and mode! complexity.
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(e.g., Robbins and Blom 1996), even if data on the quality of occupied habitat
and detailed observations on demography are not available, From this, one can
quantify variables that might be important to a species, such as elevation, slope,
ground cover, and overstory species. Data should be at least taxon specific—
meaning they vary by type of species: amphibian versus herbaceous plant versus
beetle—but often they are species specific, for instance a known habitat re-
quirement such as salty soils or a den site.

The goal is to use a statistical procedure to distinguish habitat features im-
portant for species presence as a means of identifying other sites with similar
characteristics that might be suitable for the species. Logistic regression is a sta-
tistical procedure that uses data from multiple independent variables (habitat
variables in our example) to distinguish between two alternatives (here, suitable
versus nonsuitable habitar) (Hosmer and Lemeshow 2000; Scote et al. 2002).
Logistic regression can be used with model selection criteria, such as Akaike’s
Information Criterion, to evaluate a suite of potential models and generate pre-
dictions of habitat occupancy by combining inference from muldple models or
model averaging (Burnham and Andesson 2002).

Logistic regression requires presence/absence data, but often only observa-
tions of species presence are available—usually because more effort is required
to identify sites where a species is absent (Reed 1996). Determining the status
of crypric species (for instance, those that are nocturnal, stoall, or subterranean
except when flowering or fruiting) is particularly difficult (e.g., Bibby et al.
2000). Although observed absences are preferred, another solution is to gener-
ate pseudoabsences, randomly selected points where presence has not been de-
rermitied (Klute et al. 2002; van Manen et al. 2002).

The eastern timber wolf is an endangered subspecies of the gray wolf that
has been reduced to less than 3 percent of its range outside of Alaska (Mladenoff
et al. 1999). A large carnivore with a strong social structure, it lives in packs
whose territory can cover 30 to 180 square miles (50-300 square kilometers).
Wolves declined throughout their range primarily because of habitat loss from
logging, agriculture, and human settlement (Fritts and Carbyn 1995). An ex-
tensive database was gathered from radio-collared animals, which provided de-
tails of habitat use and ecology. A geographic information system was used to
add landscape features of habitat use to the distributional dara, providing a plat-
form to infer the potential importance of large-scale habitar features for occu-
pation or avoidance of sites by wolves, Features studied included human popu-
lation, deer (prey), and road densities. Data were gathered from seventeen to
twenty-one wolf packs and compared to fourteen similarly sized, randomly se-
lected sites 2 minimum distance from known wolf habitat. Logistic regression
results showed a number of significant variables such as land ownership class
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and human population, with the most important variables being road density
and fractal dimension (an index of patch-boundary complexity relative to patch
size). This model was then used to identify amount and spatial distribution of
suitable wolf habitat in the region. Model validation and improvement is ongo-
ing (D. Mladenoff, pers. comm.).

Using Population Viability as a Criterion for Critical
Habitat Determination

The second step in designating critical habitat requires determining whether a
particular size and configuration of habitat is sufficient for survival or recovery
of the species; such analyses implicidy relate population size and connectivity
to measures of viability. The question, How much is enough? as applied to
population size and habitat configuration, is perhaps the most difficult prob-
lem for the science of conservation biology to answer. First, targets for risk in
the form of extinction rates, population size or number of populations, and
time horizons must be identified. Then analyses must be conducted to accu-
rately and precisely assess extinction risk from different levels and configura-
tions of habitat. This is the classic “minimum viable population size” problem
(Shaffer 1981), which created the field of population viability analysis (Beis-
singer 2002).

Defining a Viable Population

Viability can be defined as the chance (probability) of species persistence or re-
covery to a predetermined level. Thus, a viable population is one that has a high
probability of long-term persistence or of increasing to a predetermined level.
Population viability analysis (PVA) is an assessment of risk of reaching some
threshold (such as extinction) or projected growth for a population, either un-
der current conditions or those predicted for proposed management. PVAs have
ranged from qualitative, verbal processes without models to spatially explicit,
stochastic simulation models (Boyce 1992; Burgman et al. 1993), but recently
only quantitative, data-based models are considered to be PVAs (Ralls et al.
2002; Reed et al. 2002).

Concerns about appropriate use of population viability analysis have been
expressed elsewhere (Taylor 1995; Beissinger and Westphal 1998; Ralls et al.
2002; Reed etal. 2002} and should be reviewed by anyone attempting a PVA. Al-
ternative methods of making conservation decisions, however, are often less able
to address uncertainty and may be less transparent about their reliability (Brook
etal. 2002; Akgakaya and Sjsgren-Gulve 2000). Stochastic (probabilistic) results
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of PVA have been evaluated by comparing predicted declines with observed de-
clines of corresponding populations (Brook et al. 2000). Although PVA models
can predict short-term dynamics in an unbiased manner, their ability to precisely
and accurately forecast the chance (i.e., likelihood) of extinction is much weaker
unless the population is growing or declining very rapidly (e.g., Ludwig 1999;
Belovsky et. al. 1999; Brook et. al. 2000; Fieberg and Ellner 2000). The likeli-
hood of extinction usually cannot be tested directly with field measurements, but
secondary predictions from PVA models can be compared with patterns ob-
served or measured in the field (e.g., McCarthy and Broome 2000; McCarthy
etal. 2001).

For application to determining critical habitat for threatened species, viabil-
ity should be defined in texms of an acceptable probabilicy and time frame, and
an agreed definition of persistence (e.g., a population size or rate of change).
There are few purely scientific reasons to select particular levels for these param-
eters; their values are a function of the level of risk aversion or attitude roward
risk and uncertainty. They can be based on previous applications or precedence,
or on rule-based criteria used to assess threat categories. For example, the Inter-
national Union for the Conservation of Nature and Natural Resources (ITUCN
2003) criteria define a species as “vulnerable” if it has 10 percent probabilicy of
extinction within one hundred years. If the goal is species recovery, then a
threshold should be defined based on a historical or other socially acceprable
level of abundance (box 13.1).

There are also a few technical considerations. For example, probabilities
very close to 0 or 1 are difficult to estimate, so “high probability” cannot be de-
fined as 100 percent or a value very close to it. Very long term predictions tend
to be uncertain because errors in models are propagaged with each time step
(usually a year) and the future itself is often full of unanticipated events that are
not incorporated into the model. Thus, there is a trade-off berween the rele-
vance of long-term predictions and the relative certainty of short-term predic-
tions, so multiple time horizons might be examined with lower levels of risk tol-
erance for shorter time frames (Ralls et al. 2002). Finally, population dynamics
are difficult to predict at low population sizes due to Allee effects, so higher
thresholds for persistence are both more precautionary and technically more
feasible. For example, viability of a long-lived vertebrate might be defined as the
probability that population size will stay above fifty mature individuals for the
next ffty or one hundred years.

Determining Viabilizy
Viability of a population or species depends on many factors and interactions
among them. These factors can be grouped into four broad classes:
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BOX 13.1 Biological and Nonbiological Decisions
in Recovery Planning

Setting recovery criteria for endangered species, such as number of viable popula-
tions, minimum number of individuals, or minimum distribudon of individuals
across 2 region, requires that both biological and nonbiological decisions be incor-
porated into the process,

Biological Decisions

Defining species, subspecies, populations, and (infrequently) individuals
Defining the management landscape

Identifying threats to population persistence

Identifying sources of relevant data .

Nonbiological Decisions

Establishing a fime frame for recovery
How far into the future should you evaluate viability? We recommend ar least
twenty generations and one hundred years. Qur feeling is that a time frame of at
least rwenty generations znd one hundred years would be needed.

Determining the degree of acceptable risk in Jong-term persistence
How certain should you be thar your recovery goal will be effective? The greater
the desired cerainty, the larger the required population {and therefore more
habitat saved) and the more accurate predictive modeiing dara must be. We rec-
ommend at least 30 percent certainty of greazer than 90 percent probability of
{ong-term pessistence.

Deciding what type of risk to minimize
There are two types of relevant statistical errors (Reed 1996): Tjpe I error con-
cludes a species is endangered when it is secure. The cost of being wrong means
spending money to recover species not at risk (worse economically). Bpe I error
concludes that a species is secure when it s endangered. The cost of being wrong
means species could be lost by subsequent actions (worse biologically), One can-
not minimize both types of error, so compromise must agree on the acceptable
level of risk for both types.

Population size and structure, including the number of individuals; distribution
to stages and subpopulations; density of individuals; and trends in population
size and structure

Habitat, including quality; amount and spatial configuration

Demography, including survival; fecundity; dispersal rates, including spatial
variation, temporal trends, and fluctuations; breeding system; and sex ratio
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Relationships between demographic rates and habitat and between demographic
rates and population size

Thus, measures such as population size, population growth rate, or area of
habitat capture only a portion of the factors that affect viability. See Ruck-
elshaus and Darm {this volume) for further discussion.

Using Viability as a Criterion

Viability can be defined as long-term survival of the species, so it is an appro-
priate end point for designating critical habitat. More important, viability im-
plicitly integrates factors that determine persistence and recovery, namely habi-
tat quality (e.g., the abundance of food resources, levels of contaminants,
presence of predators), demography {survival, reproduction, variability, density
dependence in survival and reproduction), and spacial characteristics of both
habitat and the target species. If a given habitat does not supporrt a viable popu-
lation, population viability analysis can be used to present alternate manage-
ment scenarios that create critical habitat, such as changes in the spatial config-
uration of the habitat, habitat improvement, and increasing connectivity
through, for instance, habitat corridors.

Viability can be used as a criterion in designating critical habitat by calculat-
ing and comparing viability of the species under different scenarios for the area
and spatial configuration of the habitat that would be protected under alterna-
tive critical habitat designations (fig. 13.2). Scenarios are ranked in comparison
to one another and compared with the viability criteria.

Seiect aliernative scenarivs of habitat
configuration ang fotal area protected

M

Determine viability of the population for
each alternative; eliminate those thai are
not viable

Add area or change | ng
spatial configuration
1o create scenarios

Al least one vigble?

Figure 13.2. Using population viability analysis to compare alternative scenarios for
designating critical habitat. :

Chapter 13. Critical Habitar 175

Incorporating Habitat into a Viability Assessment

Incorporating habirat into a viability assessment requires a quantitative descrip-
tion of the habitat (see table 13.2). Habitat models describe suitability of the
land as habitat for a particular species. Suitability is usually based on locarional
information or presence/absence data occurrence or sightings but also can be
based on variables such as fecundity.

There are various methods of estimating the habitat model outlined above,
each with differing demands for data and technical expertise (table 13.2). The
resulting model is one step used to create a map of the species’ habirat (fig. 13.3)
Habitat models can be validated by estimating them with data from half of the
landscape and using them to predict the suitability of locations where the
species has been observed in the other half (e.g., Ak¢akaya and Arwood 1997),
or with new field data (e.g., Elith 2000).

A habitat model can be incorporated into viability assessment by basing
components of the PVA model, or alternative scenarios, on the amount of and
connections between habitats, or on maps of habitat (Akgakaya 2000; fig.
13.3}. These components can include spatial structure of the model (number
and location of subpopulations), dispersal rates among subpopulations, as well
as population-specific model parameters such as population size, carrying ca-
pacity, survival rate, and fecundity. Thus, habitat-based population viability
analyses have the potential to integrate demographic and habitat models. These
models can be used to determine whether a given configuration of habitat is
more fikely to support a population with a low risk of decline and/or a high
probability of recovery than some alternative configuration.

In many landscapes, habitats for most species change over time due to natu-
ral processes, such as disturbances and succession, and human activities, such as

‘Occurrence Demographic data -
.nm“m......” b — —
v
Habitat - ‘Model parameters:
requirements - P - Spatial structire ;
Jof jife sfages : Population o
S— .w e IMialirates”
_.u“.._.wm.nm,.wmm s — ..<. :
‘habitat. - Spatially -
‘variables ;. - ~'structured ©
_ — model*

Figure 13.3. A framework for evaluating potential critical habitat using population viability
analysis (Akcakaya and Atwood 1997; Elich 20007,
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forestry and urban growth. Such changes can be incorporated into viability as-
sessments by linking habitat-based demographic models with Jandscape models
(Akgakaya 2001). Species that live in fragmented landscapes and depend on
temporary habitat patches are especially sensitive to both habitat and popula-
tion dynamics. Viability of such species depends on the balance between the
rate of appearance and spatial arrangement of patches and the reproductive ca-
pacity of the species. Thus, the only way to assess viability of such species is to
consider both habitat dynamics and population dynamics simultaneously.

Caveats to Population Viability Analysis

Population viability analysis is a model, and like all models the assumnptions that
underlie it should be kept in mind when interpreting results. Consequently, it is
important to consider how to translate the results of a population viability
analysis into on-the-ground habitat designation (cf. box 13.1). One should not
merely take the minimum viable population size and associated habitat; focus
on the minimum has long been criticized in the field of conservation biology.
Issues of particular importance include problems associated with errors in
tmodel struceure and data availability, and the stochastic nature of population
dynamics, There are many sources of information on—and growing scientific
discussion about—accounting for uncertainty in a population viability analysis
(e.g., Burgman et al. 1993). None of the methods, however, make quantitative
predictions about the minimum population size needed to ensure a suitably low
risk of loss. Although not likely significant when comparing differences among
reliable, quantitative solutions, and although eliminating risk entirely is not
possible, the problem is exacerbated by the difficulty of accurately determining
population sizes of some species (Peery er al. 2003).

So, what can be done? Emerging consensus advocates a conservative ap-
proach, perhaps taking some value at the high end of a confidence interval. The
Marine Mammal Protection Act of 1994 {Act of April 30, 1994) specifies a tar-
get population size two-thirds above that of the predicted viable populadion.

Even if a PVA is practical and a sufficient buffer is placed on viability esti-
mates to reduce uncertainty risk, population size and associated critical habitat
mighe still be insufficient. An ecosystem may require more than a minimum vi-
able population of the target species to create a viable ecosystem. Soulé et al.
(2003} introduced the concept of highly interactive species, a new manifesta-
tion of keystone species, which play key roles in species interactions and nutri-
ent cycling. Although the concept of a viable ecosystem is not new (e.g., Con-
ner 1988; Logeau et al. 2002; Lomolino, this volume), the idea is not well
developed, and sufficient data and methods to determine population sizes
needed to maintain ecosystem services and processes are lacking. Soulé et al.
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(2003) and Peery et al. (2003) offer examples of how species interactions within
a community and the population sizes required to maintain them might be
determined.

These arguments support the idea of being generous in initial critical habi-
tat designation and of over- rather than underestimating needed area because of
uncereainty, and they describe the asymmetric consequences of being wrong (cf.
Reed 1996}, An error in one direction could result in species extinction while
an error in the other direction could result in loss of resources and opportuni-
ties. How large beyond the estimated critical population size this should be is
unknown.

Conclusion

Inadequate data to securely determine critical habitat will be a continuing prob-
lem. Obviously the more data available, the better will be the proposed designa-
tion. A variety of data sources exist, including censuses, surveys, mark-recapture
studies, published and gray literature, expert opinion, and occurrence data from
Natural Heritage databases. Even data from related species or species with simi-
far habitat requirements can sometimes be used.

In this chapter, we suggested a framework for selecting models to fit avail-
able data, but assessment of model effectiveness depends on the question asked.
Recovery planning is often about exploring or ranking management options,
and in such cases it is more appropriate to instead assess relative risks, which re-
quire less precision (Beissinger and Westphal 1998; McCarthy and Broome
2000; McCarthy et al. 2001). Even with insufficient data, a preliminary model
is useful for identifying data gaps and research priorities, organizing available
information, and focusing discussions. Ultimately, the best evaluation comes
from long-term monitoring data and population viability reevaluation to deter-
mine if designated critical habitats are supporting viable populations and are ex-
pected to do so in the foreseeable future.
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